STUDIES ON THE SYSTEM ZnO-V₂O₅-Fe₂O₃ Reactivity of ZnFe₂O₄ towards ZnV₂O₆

I. Rychlowska-Himmel* and A. Blonska-Tabero

Department of Inorganic Chemistry, Technical University of Szczecin, Al. Piastow 42 71-065 Szczecin, Poland

Abstract

Studies on the reactivity of $ZnFe_2O_4$ towards ZnV_2O_6 revealed that in the solid state the phases interact in a molar ratio of 1:3 to form a new compound, to which the molecular formula $Zn_2FcV_3O_{11}$ was assigned. The compound melts congruently at $825\pm5^{\circ}C$.

Keywords: DTA, iron(III), reactivity, XRD, zinc ferrite, zinc metavanadate, zinc oxide

Introduction

Our recent studies on the three-component oxide systems NiO V_2O_5 Fe₂O₃ and CuO- V_2O_5 -Fe₂O₃ demonstrated that the components of these systems interact in the solid state. The reactions involving all three oxides lead to new compounds distinguished by interesting structural and magnetic properties [1–4]. Thus, it seemed worthwhile to undertake works on analogous systems of interest. The first system selected for study of the novel phases formed by reaction between the components was the three-component system ZnO V_2O_5 Fe₂O₃.

The system ZnO-V₂O₅-Fe₂O₃ is built up from the three two-component systems: Fe₂O₃-V₂O₅, Fe₂O₃-ZnO and V₂O₅-ZnO. These systems are well known, having been investigated comprehensively earlier. The components of the system Fe₂O₃-V₂O₅ interact to produce two compounds, Fe₂V₄O₁₃ and FeVO₄, with recognisable structure and thermal properties [5, 6]. The system Fe₂O₃-ZnO includes only one compound, ZnFe₂O₄ [7], while the system V₂O₅-ZnO forms three compounds, ZnV₂O₆, Zn₂V₂O₇ and Zn₃V₂O₈, and one metastable phase Zn₄V₂O₉ [8, 9].

It was considered worthwhile to observe the reactivity of $ZnFe_2O_4$ towards ZnV_2O_6 in the solid state.

The structures and some properties of both reagents have been recognized. Zinc metavanadate can be obtained by the reaction in the solid state at 550° C of an equimolar ZnO/V₂O₅ mixture [8]. The compound crystallizes in the monoclinic system, space group C2/m or C2 [10], and melts incongruently at 645° C to deposit β -Zn₂V₂O₇, a phase stable at this temperature [11, 12]. ZnFe₂O₄ is a ferrite with a spinel-type

^{*} Author for correspondence: e-mail; irh@carbon.tuniv.szczecin.pl

structure. The compound can be obtained by a reaction between ZnO and α -Fe₂O₃, taking place in the solid state at 800°C [7] or by co-precipitation of an equimolar mixture of hydroxides followed by calcination at 600 and 800°C [13]. ZnFe₂O₄ crystallizes in a regular system, space group Fd3m [14], and melts incongruently at 1590°C.

Experimental

The following reagents were used in the experiments:

- ZnO analytical reagent (Ubichem, England),
- V₂O₅ analytical reagent (POCh, Glivice, Poland),
- α -Fe₂O₃ analytical reagent (VEB, Germany), heated at 1000°C in three 24-h stages,
 - ZnFe₂O₄ prepared by the method reported in [7],
 - ZnV₂O₆ prepared by the method reported in [8],
 - FeVO₄ prepared by the method reported in [5],
 - $Zn_2V_2O_7$ prepared by the method reported in [15].

The reagents were weighed in suitable proportions, homogenized by grinding, and shaped into pastilles, which were then heated in the solid state. After each heating stage, the samples were carefully cooled to ambient temperature, ground and analysed by DTA and XRD methods. Afterwards, the samples were again shaped into pastilles and heated further. The temperatures of the consecutive heating stages were fixed on the basis of the DTA results.

The DTA measurements were made by using a derivatograph of Paulik-Paulik-Erdey type (MOM, Budapest, Hungary) at 20–1000°C. Samples with a mass of 1000 mg were placed in quartz crucibles and heated at a rate of 10°C min⁻¹. Repeated DTA measurements on a given sample revealed that the accuracy of temperature reading was ±5°C.

X-ray phase diffractometry was based upon diffraction patterns recorded with a DRON-3 instrument (Dourevestnik, St. Petersburg, Russia). A cobalt lamp with an Fe filter was used as radiation source. Phases were identified via the X-ray characteristics included in PDF cards [16].

Results and discussion

Two series of samples were prepared for the experiments. The reagents in the first series were the oxides of the system $ZnO-V_2O_5-Fe_2O_3$, while those in the other series were reactants $ZnFe_2O_4$ and ZnV_2O_6 . The samples in the first series were heated in the following way: $450^{\circ}C \rightarrow 500^{\circ}C$ (24 h)+ $550^{\circ}C$ (24 h)+ $580^{\circ}C$ (24 h×2)+ $600^{\circ}C$ (24 h×2), and the samples in the other series were heated as follows: $550^{\circ}C$ (24 h)+ $580^{\circ}C$ (24 h)+ $600^{\circ}C$ (24 h×3).

Table 1 details the contents of the initial mixtures in both series and the results of X-ray phase analysis on samples after the final heating stage. Irrespective of the types of reagents used for the reactions and the contents of the initial mixtures, the

No.		nts of initial m n series 1/mol		Contents mixtures in s		Phases detected
	ZnO	V_2O_5	Fe ₂ O ₃	ZnFe ₂ O ₄	ZnV ₂ O ₆	detected
1	50.00	12.50	37.50	75.00	25.00	N*, ZnFe ₂ O ₄
2	50.00	16.67	33.33	66.67	33.33	$N*$, $ZnFe_2O_4$
3	50.00	25.00	25.00	50.00	50.00	N*, ZnFe ₂ O ₄
4	50.00	31.25	18.75	37.50	62.50	N*, ZnFe ₂ O ₄
5	50.00	33.33	16.67	66.67	33.33	N*, ZnFe ₂ O ₄
6	50.00	37.50	12.50	25.00	75.00	N*
7	50.00	38.89	11.11	22.22	77.78	$N*$, ZnV_2O_6
8	50.00	41.67	8.33	16,67	83.33	N^* , $Z_{11}V_2O_6$

Table 1 Contents of initial mixtures in both examined series, and results of X-ray diffraction analysis of samples after the final heating stage

N* - the phase characterized by a new set of diffraction lines

diffraction patterns demonstrated a set of lines which could not be attributed to any of the known phases of the three-component system.

The diffraction patterns of samples initially containing 50.00 mol% of ZnO+37.50, 33.33, 25.00, 18.75 or 16.67 mol% of $Fe_2O_3+12.50$, 16.67, 25.00, 31.25 or 33.33 mol% of V_2O_5 exhibited a novel set of diffraction lines and a line set characteristic of the phase $ZnFe_2O_4$. On the other hand, the diffraction patterns of samples initially containing 12.50 mol% of $Fe_2O_3+37.50$ mol% $V_2O_5+50.00$ mol% of V_2O_6 0 mol% of V_2O_6 10 mol% of V_2O_6 10 mol% of V_2O_6 11.11 or 8.33 mol% of $V_2O_3+38.89$ 11.11 or 8.33 mol% of $V_2O_3+38.89$ 11.11 or 8.33 mol% of $V_2O_3+38.89$ 11.11 or 8.30 mol% of V_2O_6 11.11 or 8.30 mol% of V_2O_6 11.11 or 8.31 mol% of V_2O_6 11.11 or 8.32 mol% of V_2O_6 11.11 or 8.33 mol% of V_2O_6 11.11 or 8.33 mol% of V_2O_6 11.11 or 8.30 mol% of V_2O_6 11.11 or 8.31 mol% of V_2O_6 11.11 or 8.32 mol% of V_2O_6 11.11 or 8.32 mol% of V_2O_6 11.11 or 8.33 mol% of V_2O_6 11.11 or 8.33 mol% of V_2O_6 11.11 or 8.32 mol% of V_2O_6 11.11 or 8.33 mol% of V_2O_6 11 or 8.34 mol% of V_2O_6 21 included a novel set of lines and a line set characteristic of V_2O_6 11.11 or 8.34 mol% of V_2O_6 11 included a novel set of lines and a line set characteristic of V_2O_6 11 included a novel set of lines and a line set characteristic of V_2O_6 11 included a novel set of lines and a line set characteristic of V_2O_6 11 included a novel set of lines and a line set characteristic of V_2O_6 11 included a novel set of lines and a line set characteristic of V_2O_6 11 included a novel set of lines and a line set of

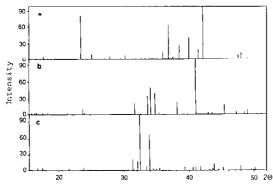


Fig. 1 Diffraction patterns: a – mixture with initial content 50.00 mol% of ZnO+37.50 mol% of V₂O₅+12.50 mol% of Fe₂O₃; b – mixture with initial content 25.00 mol% of ZnFe₂O₄+75.00 mol% of ZnV₂O₆; c – the new phase Zn₂FeV₃O₁₁

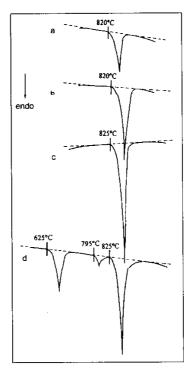


Fig. 2 DTA curves of selected samples in the first series after the final heating stage, ZnV_2O_6 and $ZnFe_2O_4$ in a molar ratio of a = 0.33:1; b = 1.67:1; c = 3:1; d = 5:1

Table 2 Results of X-ray diffraction analysis of the sample initially containing 50.00 mol% of $Zn_2V_2O_7 + 50.00$ mol% of FeVO₄, after consecutive heating stages

Phases detected	Heating time/h	Temperature/°C	No.
FeVO ₄ , Zn ₂ V ₂ O ₇ , N*	18	600	1
$N*$, $FeVO_4$ – traces, $Zn_2V_2O_7$ – traces	24	600	2
N*	24	700	3

N* - the phase characterized by a new set of diffraction lines

Figure 1 presents diffraction patterns of initial mixtures composed of 12.50 mol% of Fe₂O₃+37.50 mol% of V₂O₅+50.00 mol% of ZnO, or 25.00 mol% of ZnFe₂O₄+75 mol% of ZnV₂O₆, against diffraction patterns of the samples obtained after the final heating stage. In order to support the findings, a single synthesis of the novel phase was performed, using the reactants ZnV₂O₇ and FeVO₄ in 1:1 molar ratio. Table 2 reports the XRD analysis data on samples for each heating stage. The set of diffraction lines characteristic of the phase prepared from the above reactants ap-

peared to be fully consistent with the diffraction pattern of the sample obtained from 25.00 mol% of ZnFe₂O₄+75 mol% of ZnV₂O₆. Accordingly, the molecular formula Zn₂FeV₃O₁₁ was attributed to the new phase.

The DTA curves of the investigated samples in both series displayed one or three endothermic effects after the final heating cycle (Fig. 2). The endothermic effect recorded in the DTA curves of samples 1–6, with the beginning of the endothermic peak at $820\pm5^{\circ}$ C, may be regarded as reflecting melting of the new phase $Zn_2FeV_3O_{11}$. The DTA curves of the remaining samples exhibited three effects with the temperatures of the beginning of the endothermic peaks at 640 ± 5 , 790 ± 5 and $820\pm5^{\circ}$ C. The first of these peaks seems to correspond to incongruent melting of $Zn_2V_2O_6$ and afterwards $Zn_2V_2O_7$, the second peak to a polymorphic transformation of $Zn_3V_2O_8$ [12], and the third to melting of the phase mixture with $Zn_2FeV_3O_{11}$ as one component.

A sample of the new phase was heated at 860° C for 5 h and then quenched to ambient temperature. The appearance of the sample taken out of the furnace suggested that the sample had melted. X-ray phase diffraction of the sample prepared in this way demonstrated that $Zn_2FeV_3O_{11}$ melts congruently.

Summary

The experimental results can be summarized as follows:

- 1. The phases ZnFe₂O₄ and ZnV₂O₆ occurring in the three-component system ZnO-V₂O₅-Fe₂O₃ in the solid state are not inert to each other and interact to produce a new compound, to which the molecular formula Zn₂FeV₃O₁₁ was attributed
- 2. The compound Zn₂FeV₃O₁₁ can be prepared in a reaction in the solid state between the reagents and/or reactants of any of the sets specified below:
 - •ZnO, V2O5 and Fe2O3 in a molar ratio of 1:3:4
 - ZnV₂O₆ and ZnFe₂O₄ in a molar ratio of 3:1, or
 - Zn₂V₂O₇ and FeVO₄ in a molar ratio of 1:1.
 - 3. The compound Zn₂FeV₃O₁₁ melts congruently at 825±5°C.

References

- 1 A.B. Melentev, L. L. Surat, A. A. Fotiev, G. A. Suvorova and T. P. Sirina, Zh. Neorg. Khim., 33 (1988) 2149.
- 2 L. Kolpakova, J. Pietrzak and V. Starodub, J. Magn. Mater., 160 (1996) 374.
- I. Rychlowska-Himmel, 36th Int. IUPAC Congress, Geneva (Switzerland), 1997, Book of Abstracts, p. 402 [Chimia, 51 (1997) 402].
- 4 J. Walczak, I. Rychlowska-Himmel, A. Blonska-Tabero and P. Tabero, J. Mater. Sci., in press.
- 5 J. Walczak, J. Ziołkowski, M. Kurzawa, J. Osten-Sacken and M. Lysio, Polish J. Chem., 59 (1985) 255.
- 6 L. Permer and Y. Laligant, Eur. J. Solid State Inorg. Chem., 34 (1997) 41.
- 7 N. A. Toropov and A. I. Boriscnko, Zh. Prikl. Khim., 28 (1955) 1347.
- 8 V. A. Makarov, A. A. Fotiev and L. N. Serebryakova, Zh. Neorg. Khim., 16 (1971) 284.
- 9 G. M. Clark and A. N. Pick, J. Thermal Anal., 7 (1975) 289.

- 10 G. D. Andretti, G. Colestoni, A. Montenero and M. Bettinelli, Z. Kristallogr., 168 (1984) 53.
- 11 I. M. Chaplina, Zh. Prikl. Khim., 37 (1964) 1835.
- 12 J. J. Brown and F. A. Hummel, Trans. Brit. Ceram. Soc., 64 (1965) 419.
- 13 Nat. Bur. Stand. (U.S.) Monogr., 25, 9 (1971) 60.
- 14 V. Sepelak, K. Tkachova, V. V. Boldyrev and U. Steinike, Meter. Sci. Forum, 2 (1996) 228.
- 15 V. D. Zhuravlev, A. A. Fotiev, V. N. Zhukov and L. V. Kristallov, Zh. Neorg. Khim., 27 (1982) 1018.
- 16 Powder Diffraction File, International Center for Diffraction Data, Swarthmore (USA), 1989, File Nos. 33-664, 9-387, 36-1451, 22-1012, 23-757.